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Open Questions in Neutrino Physics
Are Neutrinos Majorana or Dirac?  Can they be a mixture?

Is there CP-violation in the neutrino sector?

What is the value of 𝛿CP?

What can we learn of leptogenesis from measurements we can make at 
accessible energy scales?

Which ordering, Normal or Inverted, characterizes the neutrino masses? 

Are there light sterile neutrinos?

Is the 3x3 PMNS matrix unitary?

Are there heavy neutrinos?
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Do neutrinos get their masses from the Higgs 
mechanism, or some other means?

What can we learn about supernovae from neutrinos 
we can detect?

Neutrino astronomy is brand new, and requires 
ambitious experiments to perform.  What can we learn
of the cosmos from neutrinos?

Not neutrino physics but you get these too:  Are 
nucleons unstable?
Do neutrons oscillate into their own antiparticles?

Open Questions in Neutrino Physics
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DUNE: Deep Underground Neutrino Experiment

Cartoon	of	Neutrino	Beamline	from	DUNE	CD-1R	CDR

Current	best	optimization	has	three	focusing	horns
Horn	current	sign	selects	neutrinos	or	antineutrinos

Laura	Fields
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The DUNE Near Detector

Magnetized Spectrometer

Straw-Tube Tracker

Lead-Scintillator ECAL

Resistive-Plate Chambers
for muon ID

Two competing alternatives:

Liquid Argon TPC (like the Far
Detector)

Gaseous Argon TPC

Reference Design – Fine-Grained Tracker
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The DUNE Far Detector
• Liquid-Argon TPC
• Four modules with 10 kton fiducial mass each:  40 kton total.   70 kton of liquid argon 
• Located at the 4850' Level of SURF, 1300 km from Fermilab
• Reduced cosmic-ray rate at depth enables a rich physics program

Proton Decay, SNB, Atmospherics, rare events
• First module will be a single-phase detector like ICARUS and MicroBooNE
• Subsequent modules may be single-phase or dual-phase detectors
• Start installing Module 1 in 2021, Ready to run in 2024
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time

Liquid-Argon Time-Projection Chambers (Single-Phase)

Charged	particle
leaves	a	trail	of	ionized
Argon	atoms	and
drifting	electrons.

Some	recombination
at	the	ionization	point,
some	attach	to	
impurities	during	the
drift.

Signals	picked	up	on
induction-plane
wires	and
collection-plane
wires.

Two-dimensional
views	of	a	three-
dimensional
interaction
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The DUNE Single-Phase Far Detector Anode Plane
Assemblies

Wrapped	U and	V induction-plane	wires	provide	for	front-and-back	
readout	with	electronics	only	needed	on	one	end.

Front-End	Electronics	(cold)

2560	readout
wires	per	APA
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The DUNE Single-Phase Far Detector

3.6	meter	drift
Two	APA's	stacked	vertically,	each	6	m	tall.
Drift	field:		500	V/cm:		180	kV	on	the	cathode
Anodes	are	grounded
150	APA's	per	10	kt module

4.7	mm	wire	pitch
384,000	readout	wires	per	10	kt module
500	MHz	digitization	(12-bits)	for	each	
readout	wire.

Photon	detectors	inside	APA's

Not	magnetized

Beam	perpendicular	to	electric	field
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Sensitivity of Observable Distributions to Oscillation Parameters

Oscillation Probabilities depend
on L/E, and matter.  

With L fixed, E needs to be
measured in a broad-band beam.

Expected reconstructed
energy distributions in 𝝂eCC-
selected events in DUNE .

Assumes 99% rejection of NC
events.  10x background (90%
rejection) would reduce the
sensitivity by an enormous
amount.

Source: DUNE CD1-R CDR
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A Physics Program Beyond Oscillations

Neutrino cross section measurements on Argon, Carbon, Oxygen, Iron, electrons
• inclusive, and
• exclusive, by final state

Beam Flux determination

Nuclear physics effects:  
• Multiparticle interactions in the nucleus
• Final-State Interactions
• Hadron formation and absorption

Search for Exotic new particles

Other exotica:
• CPT violation
• Neutrino Decay
• Violation of the rules of Quantum Mechanics
• Anomalous neutrino magnetic moments
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Ambiguities in Interpreting Individual Events
• Misidentification rates are non-zero:  The big ones of concern:

• electron and a photon from 𝜋0 decay
• muons and charged pions
• charged pions and protons
• Short track vs. no track
• Missing energy – neutrons, neutrinos, and escaping photons

• Causes misclassification of events among 𝜈𝜇CC, NC, and 𝜈eCC

• Energy resolution is not perfect – the measurements of an event do not 
determine the energy unambiguously

• For atmospheric neutrinos – the direction measurement is also not perfect
affects L measurement

• Detector inhomogeneity and anisotropy contribute, but these effects are small
isochronous tracks
wire-wrapping ambiguities

• Two approaches to handling uncertainty:
• Best-fit and local uncertainties:    "Profile"
• Integrate over them:                       "Marginalize"
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Event Classification
• Different categories of events have different signal and background expectations.

• Example:  The dE/dx of the initial part of the electron shower is needed to distinguish between 
1-MIP and 2-MIP signals.  

• The first 2.5 cm is the most important part (5 hits in the best case, fewer in
views with wires not perpendicular to the track)

• Ideally you should know where the primary vertex is so you can start the 2.5 cm search.

• Events with additional hadronic recoil (protons, charged pions) have a well-defined 
primary vertex

• Events with just one EM shower and nothing else are more ambiguous:  half a pizero, 
or an electron?

• More NC background expected in the shower+nothing sample.
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Example Events in ArgoNeuT with EM showers

A 𝜈eCC candidate with a recoiling proton

Wire	number
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Induction	View

An event with a 𝜋➝𝛾𝛾 candidate in which only one
𝛾 conversion is visible

dE/dx	of	1	MIP	if	electron

dE/dx	of	2	MIPs	if	𝛾➝e+e- conversion

Two discriminants here – displaced vertex topology, and dE/dx.
Can use the data to calibrate one by using the other to purify a sample of electrons or photons.  
Need a model of the correlations however.

If all you have is the shower and no other tracks from the primary vertex, it is harder to look at the first 2.5 cm
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DUNE
CDR: Annex 4C

Separation of Electrons and Photons from Ionization Alone

D.	Stefan

90% background rejection,
just from dE/dx

We expect to get another
factor of 10 from topology
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• Another example – events with a good electron candidate, but also a 𝜋0 candidate.  

• Rejecting events with 𝜋0 candidates in them reduces signal efficiency.  

• Keeping them lets in more backgrounds and poorer energy resolution (shower overlaps
and combinatoric mistakes)

• Put these events in a separate category!

• Three showers vs. two.  Suppose we only get one leg of the 𝜋0 but the other looks very
electron-like.  Give it the right weight!

• Other examples –

• Energy resolution of partially contained events
• Particle ID of exiting or interacting particles
• Particle ID in a dense environment 

• Collider analyses use lepton isolation in order to purify samples.
• Neutrino experiments are desperate for every event

Event Classification
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Event Classification
Current set of event categories
(reconstructible) envisaged for the DUNE ND

FD similar.
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Additional Benefits of Classifying Events into Many Categories

• Events are given the most statistical power they can have
• Simply adding events of different kinds together in Ereco histograms stirs together 

background and signal that could be separated.

• Mitigates the effect of high-significance events near cuts.  

A re-calibration can cause important events to disappear from a cut-based analysis
A multi-category analysis is more likely to keep the events.

• You can split the work up among members of a large team without stepping on toes.

• You need to define boundaries of who gets which events of course, and keep the 
communication channels open

• Some categories may not diagonalize nicely onto theses or publications however.  
Example:  "Loose" vs. "Tight" electron selection categories provide rather 
nonphysical boundaries for publications.
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Additional Benefits of Classifying Events in Many Categories

• Some event samples are control regions for other kinds of events

• Example: 𝜈𝜇CC+1𝜋0 provides a control sample for 𝜈eCC+1𝜋0 events
(lepton universality) and even NC events with a 𝜋0, though the NC
events may differ in their nuclear effects.

• Generator prediction of the fraction of events in which 𝜋0's are produced
needs to be validated/tuned

• Larger Near Detector samples can be used to tune MC for the FD.

• A choice – include constraints from other samples as external priors or fit
constraints, or include them in the fits (or Bayesian integrals) for your results.
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Pitfalls of Over-Classifying Data
Inclusive predictions almost always have smaller uncertainties that differential predictions.

Especially in the early days of an experiment when the theory is still being developed.

ggàH (+jets) with HàWWàlvlv

Anastasiou, Dissertori, Grazzini, Stöckli, and Webber JHEP 0908 (2009) 099

mH=160	GeV	at	the	
Tevatron

WWjj+X has a bigger background – ttbar!  So experiments had to classify their data by #jets
ttbar background is very big at the LHC!  
Needed good predictions for 0 and 1 jets, but only had inclusive predictions in 2009, and they weren't that
high order.

Theory has since improved, necessary to get Higgs physics out of the LHC.
DIS Neutrino interactions may have a similar difficulty with pion production instead of jets.
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Another Example: Compton and Møller Polarimetry at SLC

Morris Swartz, Nucl.Instrum.Meth. A 363 (1995) 526-537
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Morris Swartz, Nucl.Instrum.Meth. A 363 (1995) 526-537

Møller Polarimetry at SLC and the Levchuk Effect

Lesson:		Fit	the
wrong	function,
get	the	wrong
answer!
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Traditional MVA Techniques  
• Uses:  particle classification, event classification.

• If you're just trying to measure the fraction a process contributes to a mixture (signal + background), then the
MVA output values (event scores) can be directly used in the statistical analysis.  Each bin of each histogram is
statistically independent of the others (but shares systematics of course)

• We're interested in the energy distribution of course.

• Boosted Decision Trees – See implementation in TMVA
• Random Forests
• Neural Networks – Classic, easy to train.  Hard to pick input variables.  Hard to justify network topology a priori.
• Genetic Algorithms

• Training a MVA may not optimize what we care about!  We care about:
• Expected p-value for ruling out 𝛿CP = 0.
• Expected uncertainty on the measurement of 𝛿CP
• Expected p-value for excluding the incorrect mass ordering
• Expected p-value for discovering proton decay

• Instead, NN training typically minimizes 𝐸 = ∑(𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑	𝑜𝑢𝑡𝑝𝑢𝑡):�
�

• Boosted Decision Trees typically maximize the Gini Score in each leaf node.

• The expected p-values and uncertainties however are very expensive to compute, whereas the contribution
of a training event to the NN weights is easy to back-propagate
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Choosing Input Variables
• Lots of experience in collider analyses

• Variables usually chosen by hand to capitalize on signal characteristics

• But we really want to separate signals from backgrounds!  And the 
background may have more distinctive characteristics than the signal.
So some strong variables are background oriented.

• Sequential NN's trained to identify individual processes

• Analyses seeking rare processes usually have gross selection first,
and then train the NN on the events passing the selection 
-- no need to make the NN work hard on events that are otherwise
easy to classify.  BDT's automate this process

• Some MVA methods perform less well when an irrelevant input 
variable is added to the list.  BDT's are (mostly) immune to this.
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Different Ways to Rank MVA Input Variables

"Importance" of input variables is not a well-defined idea.  One can rank input 
variables in a variety of ways

• Correlation to target:   Make a 2D plot of the variable vs. the desired NN output for 
the training sample.  Calculate the coefficient of linear correlation.

• Not too effective if you're looking for a rare process and the variable is great but only 
for a tiny fraction of the events.  Good variable, but correlation to target may be skewed 
by the vast majority of don't-care events.

• Sensitivity with just that variable
• Not too effective if variables work together synergistically

• N-1 sensitivity:   Knock out the variable and re-compute the sensitivity

• Sum of squares of weights on the input layer of a NN (if applicable).
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Genetic Optimization of Analysis Methods
Figures of Merit that we care about are often expensive to compute.
• Range of 𝛿CP with a minimum expected significance
• Expected significance of Mass Ordering sensitivity, assuming any value of other oscillation

parameters

The space of optimizable parameters is often (very!) high-dimensional. 
We'd like to explore it all but do not have the time.

• A population of  MVA discriminant functions can be created randomly, or with some 
initial guidance from the analyzer (we're not dogmatic!)

• Figure of merit is computed for each member of the population.
• Next generation of MVA discriminant functions is generated from the previous one

by selecting high-performing functions and varying features by a bit, and exchanging 
features between pairs.

• Features of a NN can include weights and also the structure (# layers, inputs, outputs, 
and unusual connections)

• Process is iterated and best functions retained.

S. Whiteson and D. Whiteson, Engineering Applications of Artificial Intelligence 22, 1203 (2009).

Software for NN training: Kenneth O. Stanley & Risto Miikkulainen
"Evolving Neural Networks Through Augmenting Topologies" . Evolutionary Computation. 10 (2): 99–127. (2002).

A similar genetic algorithm is used to optimize the LBNF target, horn and decay pipe (L. Fields).
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An Example of Cascaded Neural Networks:  CDF ZHàllbb Search
Multiple sources of background, all larger than the signal
Analysis proceeds by a 
• Preselection
• anti-ttbar Discriminant.   What's left after a cut on that goes through

• anti-Z+jets discriminant.  "      "      "             "               "
• anti-Diboson discriminant      "       "       "      "

• Signal Discriminant trained on what's left

This method is great
if you want to purify a small
sample of rare events with several
sources of large, uncertain 
backgrounds (proton decay folks!)

Not so good if you want to do
an inclusive analysis!
The properties of the selected events
are highly sculpted!

What you get is what you set out
to find.

Pass all four
distributions to
the fitter for
nuisance parameters
and signal rate
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Uncertainties on Reconstructed Quantities

• Frequently a track fit will also produce an error matrix.  Also cluster energies 
can be provided with uncertainties.

• Cores and tails of distributions are frequently not represented well by 
measurement uncertainty estimates.

• A naive inclusion of the measurement uncertainty in a likelihood function can cause fit biases.

• Giovannni Punzi, "Comments on Likelihood Fits with Variable Resolutions", in the 
Proceedings of PHYSTAT2003, SLAC-R-703, available at
http://www.slac.stanford.edu/econf/C030908/

• See Louis Lyons's description of the Punzi Effect  https://indico.cern.ch/event/431039/

• Measurement uncertainties are really just additional observables, which can be used
to help us classify events.

• Can be used in kinematic fits in order to compute other observables, but use only in
order to place events in categories or bins whose contents are predicted using 
MC or data-driven models



January 12, 2017 Thomas Junk BNL HEP Seminar 29

Filling Histograms with Distributions for Each Event

The "ideogram" method.  Or "kernel smearing".

Contents of each bin are no longer Poisson.

Results are highly correlated from one bin to the next.

Need a MC model to predict the shapes of such 
distributions – not easy to compute
likelihoods for extracting model parameters

Not very popular in HEP, but it has been used.
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Matrix-Element Techniques
For a particular physics process indexed i, the probability to measure observables y is

𝑃= 𝒚, 𝜽 = 	
1

𝜎= 𝜽 𝐴= 𝜽
D 𝑊= 𝒚 𝒙, 𝜽
GH

𝜖= 𝒙, 𝜽 𝑀= 𝒙, 𝜽 :𝑇= 𝒙, 𝜽 𝑑𝒙

See I. Volobouev, arXiv:1101.2259 for a good introduction. 

Where 𝜃 are the model parameters, both physics and detector
x are the true kinematic variables  (y are measured)
Wi(y|x,𝜃) are transfer functions for observing y given a true x (Detector model)
Mi(x, 𝜃) are quantum-mechanical matrix elements (theoretical)
𝜖i(x, 𝜃) are the efficiencies to reconstruct, identify, and select events, and
Ti(x, 𝜃) are factors that do not depend on y, such as beam flux, parton density 

functions, oscillation parameters

The observables y are usually things like reconstructed lepton momenta, jets,
etc.  Not hits or ADC values.
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Matrix-Element Techniques
Uses of Pi(y, 𝜃):
• You can use Bayes' Theorem to derive Pi(𝜃,y) and extract the physics parameters 𝜃.  

Used in top-quark mass measurements at D0 and CDF

• You can use it as an input to a MVA method to separate classes of events.  A likelihood ratio
of the Pi's is optimal if all the information is in the kinematics of y

𝐿signal =
𝑃signal(𝒚, 𝜽)

∑ 𝑃= 𝒚, 𝜽�
=

• Discriminant variables are just functions of the observed y.  Events are still just counts in
histograms.

• Example use in neutrino experiments:  The momentum and angular distribution
for photons from 𝜋0 decay in NC events won't be the same as electrons in 𝝂eCC events, and 
other kinematic quantities such as missing pT will be correlated.
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• Collider use found that BDT's and NN's performed as well as or better than matrix-
element
techniques.  Often particle-ID variables are strong inputs too, and sometimes these are 
put in separately assuming they factorize from kinematics

• See for example CDF's single-top
observation: T. Aaltonen et al., Phys.Rev. D 82 (2010) 112005. The P's are as before, 
and b is a b-tag discrimiant

• These methods may not be fully optimal,but they
can be an important part of a larger effort.

Matrix elements do not have to be correct, they only have to be useful.  

Collider people frequently used Leading-Order matrix elements to separate signals from backgrounds.
Need to calibrate performance with data or with a full MC however, using Feldman-Cousins or other techniques.

Matrix-Element Techniques

In a neutrino experiment, Signal and Background matrix elements may formally be nearly the same!  
But backgrounds often involve misidentified particles.
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MVA Techniques for an Oscillation Experiment

An issue:  The efficiency as a function of neutrino energy almost certainly 
won't be a uniform function.

Higher-energy events are often easier to classify than lower-energy ones.

Lower-energy events carry more oscillation information.

Mismodeled sculpting of the reconstructed energy distribution by a 
cut on an MVA function can fake a different value of the oscillation parameters.
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Convolutional Neural Networks
A great, new idea – getting traction in HEP.

Useful in image analysis:  Networks analyze patches of an image, and are scanned over the entire image, one
bit at a time (the "convolution"). 

Don't need to process raw data to find tracks and showers:  just feed raw (or better yet, noise-filtered, electronics-
deconvoluted) data in as image data.

"shift-invariant" neural network – if the detector is homogeneous, the image processing should respond to a
neutrino scatter anywhere in the detector the same way.

Slide	from
A.	Radovic
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Example from NOvA
A.	Radovic

Full Network based on GoogleNet (2014).
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Example	from	NOvA
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Convolutional Neural Network Application in DUNE –
Separating EM-like from Track-Like Pixels One at a Time

R.	Sulej
D.	Stefan
P.	Płoński
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Training using Data
At CDF, the Monte Carlo models were not trusted to simulate misreconstructed objects reliably.
• lepton ID misassignment ("fakes")
• b-tag mistakes ("mistags")

Predictions are data-driven, or use a mixture of data and MC to predict background rates.

But how to train the MVA's?  

• Invert a selection requirement to purify a sample in a chosen background and use those events.
• Must be careful not to use the same data events to train as to predict the backgrounds.
• Dataset size is often the dominant limitation.
• Events failing an selection requirement may be biased in other ways too.  

• Model biases using Monte Carlo and correct for them in the modeling of the background, OR
• Invert another (hopefully independent!) selection requirement.  Use the other two regions to measure

the bias in the data ("ABCD" method) 
• Used in the modeling step, not necessarily for the training step

• Topic has come up in discussions of how to train deep-learning
discriminants when real data are preferred over simulations.

• The problem of limited training example size may be worse than the 
problemcof training with a biased sample.

• No such thing as incorrect discriminants, just incorrect models.

A B

C D
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cut	1

"signal	region""control	region"

"control	region" "control	region"
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Many Analyses All Doing the Same Thing
What if they produce different outcomes?

How best to divide the work among many collaborators.

A common strategy:  divide the event samples into non-overlapping pieces

A more difficult strategy:  have many analysis teams select exactly the same events but 
apply different techniques to them.  Example: single top combinations.

Uncoordinated teams usually select highly overlapping event samples but not exactly the same.
• Overlapping events in data are usually easy enough to identify and count
• Overlapping events in shared MC samples also aren't too hard
• But some predictions are mixtures of data and MC, are not individual events, or are extrapolations,

and thus overlap is not the right word.  Statistical correlation needs to be evaluated in repeated simulated
experiments.  Sampling finite event MC's with replacement is usually fine.

LF-ME 58.9% ME-NN 60.8% LF-NN 74.1%
Example:  CDF 
single-top cross section
measurements.  Three
analysis groups, 
same events.
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Upgrading An Analysis Without Using Fresh Data
• A common situation at the end of an experiment – no opportunity to take more data.
• Also common if many groups want to analyze the same data to infer the same parameters but

using different techniques.
• A cause of endless acrimony – especially if not blind.
• Example:  T. Aaltonen et al., Phys.Rev. D 87 (2013) 052008  -- updated Higgs boson search at CDF

in the METbb channel, using a new b-tag.

People will always want a p-value for the
discrepancy between the results.

What is the test statistic?  The ratio of the two results?
The difference?  The absolute value of the difference?
How about the probability of the difference or bigger
assuming one of the values?
What true value is assumed when generating
pseudoexperiments?

If you must choose a method, how do you do it?
• Best expected performance, of course!  Ignore the data

result when looking at performance.
• But suppose an analysis team has many possible

improvements, all of which improve the expected
performance.  It is still possible to cherry-pick those
that give a preferred result in the data.
More of a higher-order effect, but people work very
hard.

Assumes SM Higgs boson present at
mH=125 GeV.
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An Example from NOvA:  R. Patterson, FNAL JETP Seminar, Aug 6, 2016

Likelihood	ID

Library	Event	Matching

Both	selectors	have	~1	background	event	and	~6	signal	events	for	a	particular	oscillation	hypothesis.		Sensitivities	were
indistinguishable.

Note: significances here are computed comparing data with background only (1 event).  Both outcomes are
much more likely if there is signal, and the significance of the difference is less.
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Control Over Systematic Uncertainty
The traditional concern: underestimated uncertainties mean the result is not valid within its error bars

But:  overestimated uncertainties can be just as bad in a subtle way:

Nuisance parameters are constrained in the oscillation fits.
A measured sample with an overestimated systematic uncertainty on its predictions ends up claiming it is
more sensitive than it really is to a particular nuisance parameter.  Fitting that constrains it too hard for
use in other samples.

Missing uncertainties (unknown unknowns)

One nuisance parameter covering for another's misprediction -- observed discrepancy between data and MC
may be misascribed to the wrong nuisance parameter.

MVA's: check inputs and outputs in control samples and in the signal sample

• Theoretical predictions, especially those that depend on the hadronic recoil (or lack thereof), are highly
uncertain.
• Standard MVA techniques are really just functions of observables to compute more observable quantities

that are more optimal and are thus not uncertain
• But they can amplify mismodeling, and thus uncertainties need to be propagated through standard MVA

functions.
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Using Data Control Samples to Model Difficult Backgrounds

𝜈𝜇CC events provide a fertile ground to study nuclear effects and hadronic recoil systems

Lepton universality (almost!  The mass difference between e and 𝜇 has an impact on the
cross sections. See for example Day and McFarland Phys.Rev. D 86 (2012) 053003))

Neutral-Current event candidates on the other sides of cuts provide control samples
for NC background rate measurements.

Rare-event searches like proton decays will have plenty of backgrounds from cosmics and
atmospheric neutrinos – invert cuts and extrapolate measurements in to the signal samples.

A problem if the control samples have fewer events than the signal sample.
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Prototyping and Test Beams
Single-Phase	and	Dual-Phase	6x6x6	meter	detectors	in	charged-particle	beams	at	the	Prevessin site	at	CERN
Scheduled	to	run	before	LHC's	Long	Shutdown	2	starts	(end	2018).
Collect	about	2.5	PBytes of	raw	data	each

Beam	is	mostly	pions,	with	some	protons,	electrons,	muons,	and	kaons.		Energies	from	0.5--10	GeV
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Test-Beam Measurements
Constraints	on	physics	quantities
• Electromagnetic	Energy	Scale
• Muon	Energy	Calibration	-- range	and	multiple-scattering
• Hadron	energy	scale
• e/𝛾 Separation
• 𝜋0 identification	and	energy	measurement
• Cross	sections	of	charged	pions and	kaons	on	argon
• EM	fraction	in	hadronic	showers
• Recombination	Angular	Dependence
• Dependence	on	electric	field	of

• Drift	velocity
• Recombination
• Light	Yield
• Diffusion
• Space-Charge	Distortion

Detector	Performance	Measurements:
• Diffusion
• Electron	Lifetime
• Detector	Uniformity
• Detector	Alignment
• Performance	in	gaps	between	APA's	and	for	tracks	crossing	through	APA's

Some	of	these	measurements
may	be	the	ultimate	calibrations
of	these	quantities	for	DUNE.
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Calibration of Reconstruction Performance

Energy Scale
Energy Resolution
Efficiency
Background

Common calibrations and systematics can be shared as long as the definitions of the objects
are the same and the environment in which they are used is the same.

Collider examples:  Jet energy scale, lepton ID efficiencies, lepton energy scales, tracking efficiency

Shared Systematic Uncertainty Prescriptions

works well for isolated leptons, but non-isolated leptons (i.e. in jets) have many sources
heavy flavor, fakes, and gauge boson decay.  

Neutrino examples:  EM energy scale, electron ID, pizero ID, muon ID. 
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Summary
We are still in the very early years of getting liquid argon TPC detectors to work

We can take advantage of previous experiments' lessons:  ICARUS, ArgoNeuT,
LArIAT, MicroBooNE

Test-stands and prototypes let us know what to watch out for and what the 
expected performance is

Test-beam experiments may be our most important calibration sources

Analysis techniques brought over from collider experiments and non-HEP work
benefit from years of study

New deep-learning techniques look promising!

Our understanding of systematics will drive our sensitivity in the long run.   

The goal is to turn as many systematic uncertainties into statistical uncertainties so 
more data can beat them down.
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Extras
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MC Challenges
Colliders:  Sneak an exotic particle or other physics process into the MC and see 
if your collaborators can discover what it is.

Simpler challenges like Banff Challenge 2 test if physicists can find bumps in 
histograms (much more limited question) 

https://www-cdf.fnal.gov/~trj/

I am unaware of this sort of thing for DUNE.  All MC is either unoscillated
(pure 𝝂𝜇 or pure 𝝂e).

Can generate samples with hidden MC truth values for the physics of the events 
and for the oscillation parameters.

Maybe even distort the nuclear modeling spectra.
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Tools	of	the	Trade
Neutrino	Experiments	with	Beams
• T2K
• NOvA
• MINOS
• MINERvA
• MiniBooNE
• MicroBooNE
• ICARUS	(CNGS	and	future	FNAL)
• SBND	(future)
• DUNE		(future	– the	expt I	work	on)
• OPERA
• LVD
• T2HK	(future)
• LSND
• ANL	and	BNL	bubble	chamber	experiments

Neutrino	Observatories	without	Beam
• SuperK
• HyperK (future)
• SNO
• AMANDA/IceCube/DeepCore/PINGU
• ANTARES
• NESTOR
• IMB
• INO	(future)

Reactor	Neutrnio Experiments
• Daya Bay
• RENO
• Double	Chooz
• KamLAND
• JUNO	(future)

Gallium-Enhanced	Neutrino	Experiments

• GALLEX/GNO
• SAGE
• ANNIE

Neutrinoless Double-Beta	Decay	Experiments
• NEMO
• CUORE
• EXO
• GERDA
• MAJORANA
• KamLAND-Zen

Incomplete	List
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Matrix-Element	Techniques

• Calculate probability density of an event resulting from 
a given process 

• The input variables are the same for all matrix elements 
– adding a new matrix element requires more 
calculation but does not use any different information 
from the data

Parton distribution functions

Matrix element:
Different for each process.

Leading order, obtained from 
MadGraph

Transfer functions:
Account for 

detector effects in 
measurement of jet 

energy

Phase space factor:
Integrate over unknown 

or poorly measured 
quantities

Inputs:
lepton and jet 4-vectors –

no other information 
needed!



PMA: other way around:    3D object(s)  « hits or raw ADC in multiple 2D views

usual:     n compatible 2D hits à 3D space-point  à fit 3D trajectories to space-points
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Projection Matching Algorithm (PMA) 3D approach: what is different
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2D	proj =	f(3D)

3rd plane 2D:
robust validation:

build 3D	(single	track or full track structures)	to	minimize distance the	object’s 2D	projections to	2D	hits

dist2D()	measures:

MSE(hit,	object),
but	also other fn’s…

2D 2D

validate using
unclustered hits

2D 2D

2D

compatible hits

Cluster	association is verified using
projection to	the	3rd view:

Earlier	work:	M.	Antonello	et	al.,	Adv.High Energy	Phys.	2013	(2013)	260820

R.	Sulej
D.	Stefan


